Pulmonary Tumourlets: Case Report and Review of Literature

Swati Agarwal¹, Kumud Gupta¹, Shalini Mullick¹, Aastha Chauhan¹ and R.K. Dewan²

Departments of Pathology¹ and Thoracic Surgery², National Institute of TB and Respiratory Diseases, New Delhi, India

Abstract

We report a case of tumourlets of the lung associated with carcinoid and neuroendocrine cell hyperplasia, found incidentally in a 30-year-old woman, who underwent bullectomy for pneumothorax. These lesions are histologically similar to carcinoid, but differ in molecular pathogenesis about which little is known. Their nature and significance is debated. Here, we point out the importance of histological, clinical, and diagnostic aspects and follow-up to have evidence of eventual malignant evolution. [Indian J Chest Dis Allied Sci 2015;57:235-238]

Key words: Pulmonary tumourlets, Carcinoid, Neuroendocrine hyperplasia, Bullectomy.

Introduction

Pulmonary tumourlets are incidental finding at histopathological examination of lung parenchyma seen particularly in lung scarred by bronchiectasis or other chronic inflammatory process.¹,² These are defined as hyperplasia of neuroendocrine cells (NE cells) that are 5mm or less in size.² These share histologic, ultrastructural and immunohistochemical features with carcinoid, but little is known about their exact molecular pathogenesis.²,³ As an isolated lesion these are fairly common, but with NE cell hyperplasia these are uncommon.⁴ Recently 11q13.1 region imbalance has been demonstrated in the pathogenesis of pulmonary tumourlets/carcinoids.⁷ These might represent early or in situ small lung cancer.⁵ In this report, we present a rare case of tumourlet associated with carcinoid and neuroendocrine hyperplasia in a patient of pneumothorax who underwent bullectomy.

Case Report

A 30-year-old woman came to our hospital with complaints of left-sided chest pain and reduced appetite for one year. It was not associated with cough, fever, haemoptysis or a past history of tuberculosis. Routine haematological and biochemical investigations and pulmonary function tests were within normal limits. Contrast-enhanced computed tomography (CECT) of chest showed left-sided pleural thickening with encysted pneumothorax (20cm×1.4cm) with plate atelectasis in the left middle zone (Figure 1). There was no evidence of thickening or nodularity in the interstitium. Thoracotomy with left bullectomy was performed. On gross examination, the excised pieces measured 6cm×2.5cm×1.2cm and 4.5cm×3.5cm×1.2cm (Figure 2). These were greyish black to brown in colour and showed a white circumscribed area measuring 0.8cm in diameter. The microscopic examination revealed pleural tissue covered lung parenchyma lined by respiratory epithelium comprising of multiple clusters/nodular aggregates varying from 2mm to 6mm (Figure 3A). These tumour cells were round to oval with scanty cytoplasm, bland nuclei and speckled chromatin. These cells were positive for CD56, chromogranin (Figure 3 B&C), and synaptophysin and were negative for CD45 and high molecular weight cytokeratin (HMWCK). One of the foci revealed a larger aggregate of similar tumour cells measuring 0.6cm in diameter.

Figure 1. Contrast-enhanced computed tomography of chest showing left-sided pleural thickening with encysted pneumothorax (20cm×1.4cm) with plate atelectasis in the left middle zone.

[Received: March 27, 2014; accepted after revision; February 17, 2015]

Correspondence and reprint requests: Dr Swati Agarwal, Department of Pathology, National Institute of TB and Respiratory Diseases, Sri Aurobindo Marg, New Delhi-110 030, India; E-mail drswatiagr@yahoo.com
Pulmonary tumourlets Swati Agarwal, et al

Figure 3D. Cystically dilated bronchi and bronchioles, many of which showed mild chronic inflammation and focal fibrosis. A few of them also showed scattered single, small clusters and nodules of chromogranin positive cells in the mucosa (Figure 3C). A final diagnosis of multiple tumourlets with neuroendocrine hyperplasia and small carcinoid was made.

Discussion

Pulmonary carcinoid tumourlets are rare, usually discovered incidentally.1-6 These are multiple localised regions of NE cell proliferation, measuring <5mm in size located along the Airways and found usually in association with pulmonary fibrosis and bronchiectasis.7 However, these can occur in the normal lung also. 1 Details of previous major reports of pulmonary tumourlets are presented in the table.1-2,5-8,11

Tumourlets develop from hyperplastic NE cells (Kulchitsky’s cell) in the bronchial and bronchiolar mucosa. Some researchers believe that their hyperplasia is a secondary tissue reaction to chronic lung inflammation and fibrosis, while other studies had suggested that this has a primary rather than a secondary role in pulmonary fibrosis.1,2,7 It was found that neuropeptides elaborated by hyperplastic NE cells mediate a peribronchiolar fibrosis that ultimately leads to more generalised, symptomatic fibrotic lung disease.17 Recently, it was found that production of pro-fibritic growth factor like vascular endothelial growth

Figure 2. Photograph showing the excised pieces measuring 6cm×2.5cm×1.2cm and 4.5cm×3.5cm×1.2cm. These are greyish black to brown in colour and showed a white circumscribed area measuring 0.5cm in diameter.

Figure 3: Photomicrograph showing (A) pleural tissue covered lung parenchyma lined by respiratory epithelium. Subepithelial area multiple clusters/nodular aggregates of round to oval cell with granular chromatin varying from 2mm to 6mm (Haematoxylin and Eosin; ×100); (B&C) multiple tumourlets and bronchi showing neuroendocrine hyperplasia (Chromogranin A; ×100); and (D) a carcinoid measuring 0.6cm in diameter (Chromogranin A; ×10).
Table. Major reports of pulmonary tumourlets in the literature

<table>
<thead>
<tr>
<th>Authors</th>
<th>Case Reports/ Series</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Associated Lesions</th>
<th>Salient Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheerin et al</td>
<td>42</td>
<td>F</td>
<td></td>
<td>Obstructive bronchiolitis, Severe air flow limitation</td>
<td>Nodules were found adjacent to pulmonary arterioles and appeared to have obliterated the accompanying bronchioles by inducing fibroblast proliferation and connective tissue deposition</td>
</tr>
<tr>
<td>He et al</td>
<td>71</td>
<td>F</td>
<td></td>
<td>Invasive lung adenocarcinoma</td>
<td>Strong vascular endothelial growth factor and TGF-β1 expression seen in the tumourlet showing a possible relationship between tumourlet and pulmonary fibrosis</td>
</tr>
<tr>
<td>Klinke et al</td>
<td>(n=7)</td>
<td>19-66</td>
<td>M=3</td>
<td>Bronchiectasis</td>
<td>Described tumourlet as a model for genesis of neuroendocrine lung tumours</td>
</tr>
<tr>
<td>Churg and Warnock</td>
<td>(n=20)</td>
<td>34-91</td>
<td>M=7</td>
<td>Extensive scarring obliterating normal parenchyma (7)</td>
<td>Earliest series to suggest that tumourlets are precursor of carcinoid</td>
</tr>
<tr>
<td>Aubry et al</td>
<td>(n=28)</td>
<td>45-84</td>
<td>M=2</td>
<td>Obstructive lung diseases (11)</td>
<td>Largest series till date</td>
</tr>
<tr>
<td>D’Agati and Perzin</td>
<td></td>
<td>38</td>
<td>M</td>
<td>Bronchiectasis, chronic bronchitis and pulmonary fibrosis</td>
<td>Excellent prognosis with minimal morbidity</td>
</tr>
</tbody>
</table>
nodular opacities which mimic miliary pattern of metastasis on computed tomography. However, due to their small size and a lack of awareness these often go unreported.

The fact that these mimic metastasis, can cause symptoms and progress to carcinoid, makes the role of pathologist more significant to identify accurately and report when these are even incidental findings in small resections, like bullectomies, lobectomies or resections for other indications. Also, the possibility of diffuse NE cell proliferation in unresected specimen always needs to be considered by pathologist, radiologist and surgeon. As the therapeutic strategy of lung tumourlets is still controversial, a close subsequent follow-up seems to be the best method of choice as done in our case. However, due to their uncertain behaviour and resemblance to carcinoid some authors suggest resection when both tumourlets and carcinoid are seen together. As the current histogenesis of tumourlets is still unclear, it is important for both pathologist as well as radiologist to identify this distinct yet less commonly described entity, so that their precise biological behaviour as well as prognosis can be defined accurately.

References


